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Anomalous refraction and conjugate solutions of 
finite-amplitude water waves 
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(Received 14 April 1982 and in revised form 28 April 1983) 

Calculations of the refraction of water waves obliquely incident on a beach indicate 
that in certain circumstances finite-amplitude waves are refracted to turn in a sense 
opposite to the refraction of linear waves. This is termed ‘anomalous refraction’. It 
is demonstrated that similar solutions exist for a wide class of weakly nonlinear 
dispersive waves. When anomalous refraction solutions exist there are two ‘ conjugate ’ 
solutions satisfying the slowly varying wave equations. Properties of the conjugate 
solutions are given here. Discussion of the possibility of jumps in wave properties 
between conjugate solutions and their relevance to refraction is in another paper 
(Peregrine 1983), which shows that the anomalous-refraction solution is not 
normally relevant on a beach. 

1. Introduction 
Refraction calculations for periodic steady wavetrains obliquely incident onto a 

beach with parallel contours are presented in Ryrie & Peregrine (1982). The waves 
are assumed to behave locally like a uniform wavetrain; ‘numerically exact ’ integral 
properties of finite-amplitude wavetrains are used in the calculations. The work 
extends that of Stiassnie & Peregrine (1980) for normally incident waves. For most 
of the examples illustrated in the above papers the finite-amplitude solutions depart 
little from the corresponding linear-wave solutions except in the neighbourhood of 
the highest waves. 

There are two categories of solution where there is a marked departure from linear 
solutions. One is near the position of linear caustics where waves are ‘trapped’ on 
the shallower side of the caustic. The finite-amplitude solutions have a limiting 
singular point similar to that found for R-type caustics in Peregrine & Smith (1979) 
and Peregrine & Thomas (1979). A second branch of the solution corresponding to 
steeper waves meets the original solution at the singularity. 

The other solutions which differ strongly from linear solutions are those for which 
the waver3 are incident nearly parallel to the bottom contours. These display 
‘anomalous refraction ’. Instead of being refracted by shallower water to propagate 
more nearly normal to the bottom contours, as one would expect from linear 
solutions, these solutions show that the waves’ propagation direction turns more 
nearly parallel to the bottom contours as depth decreases. Anomalous refraction 
corresponds to the second solution near a caustic. The range of incident angles in 
which these solutions exist depends on the wave steepness and is limited by the waves 
of maximum steepness. 
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All the anomalous refraction solutions have ' conjugate ' solutions displaying 
normal refraction for which all the conserved quantities defining a solution have the 
same values. A t  any given depth the pairs of conjugate wavetrains are well defined, 
and examples are given here. Extensions of this property to consideration of jumps 
of wave properties and to the nature of wave fields in the neighbourhood of 'linear 
caustics' are given in another paper (Peregrine 1983). 

2. Anomalous refraction 
Refraction solutions for finite-amplitude water waves described here are found in 

the same manner as those in Ryrie & Peregrine (1982) by using Whitham's method 
of averaging for nonlinear waves. The wave field is assumed to be steady and to 
depend only on the coordinate perpendicular to the depth contours, which are taken 
to be parallel. As indicated in Ryrie & Peregrine (1982), certain solutions for obliquely 
incident waves show behaviour which is qualitatively different from that for 
linear-wave solutions. 

Figures 1 (a ,  b)  illustrate the different types of behaviour. These show how waves 
of a given steepness in deep water refract, for different angles of incidence, as they 
propagate into shallower water. The solutions for angles of incidence less than a certain 
critical angle are very close to the corresponding linear theory. The waves turn 
towards the shore and initially show a reduction in amplitude as the incident 
wave-action flux spreads out. Solutions for greater angles of incidence show opposite 
properties: the waves are turned more nearly parallel to the shoreline and grow in 
steepness. In the case shown, with initial steepness a ,  k, = 0.271, the critical angle 
at  which this change occurs is approximately 8, = 77'. Thus a wavetrain for which 
amk, = 0.271 shows regular refraction for 8, < 77' and anomalous refraction for 
8, > 77'. Here a is the wave amplitude, k the wavenumber, 8 the angle of incidence 
(6 = 0 is normal incidence) and subscript 00 denotes deep-water values. 

This sudden switch in behaviour can be put in perspective by plotting the conjugate 
solutions, which have the same frequency, longshore wavenumber and onshore flux 
of wave action as the solutions illustrated in figure 1. There is a continuous family 
of solutions across the critical angle for all finite water depths. We bring the deep-water 
case to a finite position by plotting wave amplitude against tanh k, h. It is then 
possible to sketch connections between conjugate solutions across the non-physical 
part of the diagram where tanh k, h > 1, as illustrated in figure 2. The depth of the 
bed is denoted by h. For 8 < 60' no branch for anomalous refraction is shown, since 
it would correspond to waves with more than the maximum wave-action flux. 

If one considers waves commencing with a given steepness, in a finite depth of 
water, a diagram very similar to figure 2 can be prepared. In that case connections 
between conjugate solutions can be made with real solutions. However, the solution 
method clearly fails a t  the critical angle, and near any point where a solution has 
a vertical tangent. Except in the deep-water case, such singularities are in the 
neighbourhood of a linear caustic. Examples are shown in Ryrie & Peregrine (1982, 
figures 6 and 7) ; see also the corresponding cases for waves on a shearing current in 
$4 of Peregrine & Thomas (1979), especially figure 3, and waves approaching a 
circular caustic (Peregrine 1981). 

The two solutions can be better understood by examining the solution method. Let 
Ox, be normal to the depth contours and Ox, be parallel to them. For a mean current 
U*, and steady incident waves of wavenumber k* at an angle 8 to Oxl, the following 
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FIGURE 1. Variation of wave properties with depth h, to bed, for deepwater steepness 
amkm = 0.271. Each solution curve is labelled with the value of 0 a t  infinity. The solutions for 
85" and 80" exhibit anomalous refraction. (a )  Wave direction 0.  ( b )  Wave amplitude ak,. 

equations are obtained (Ryrie & Peregrine 1982, equations (lo)-( 15)) : the longshore 
wavenumber component 

(1) 
the wave frequency 

(2) 

k,* = k* sin 6' = constant; 

(p= c * k * + U**k* = constant; 

the onshore mass flow 
Q: = p*D*U:+I:  = constant; (3) 

4-2 



94 

80" 

85" 

D. H .  Peregrine and S. C .  Ryrie 

I 

I 1 I 

0.9 1 .o 
tanh hk ,  

FIGURE 2. Variation of wave amplitude with depth for deepwater steepness a ,  k, = 0.27 1 together 
with corresponding conjugate solutions (broken lines connect conjugate solutions, tanh hk, is used 
as abscissa to bring h = co to a finite point). Although the broken lines do not represent solutions, 
if initial conditions were in finite depth of water a similar pattern of solution cur'ves would result. 

the onshore wave-action flux 

(correcting a typographical error in Ryrie & Peregrine) ; and 

y* = g*(D*-h*)+W*2+2$T 2 = constant; ( 5 )  

where c* is the waves' phase velocity, given by the dispersion equation, p* is water 
density, g* is the acceleration due to gravity, D* is the water depth, I* is the mean 
mass flow associated with the waves, T * ,  V* - are the mean kinetic and potential 
energies per unit area of the wave motion, u $ ~  is the mean-square wave-induced 
velocity at the bed, and h* is the depth of the bed below a fixed reference level, such 
as mean water level in deep water. 

Equation ( 5 )  is a mean Bernoulli equation which comes directly from Whitham's 
averaged Lagrangian (Whitham 1974, §6), or from the mean-flow momentum 
equations of Stiassnie & Peregrine (1979). In  either case the flow must he irrotational. 

For zero longshore current, U, = 0, (1)-(4) can he condensed to 

I 
D 

m2[c -- cos2 $I2 = sin 8, (6) 

( - ~ + ~ T - ~ V + + D U ;  cos8sin38 = b,mi, -1 (7 )  
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where the absence of a * from previously defined variables implies that they are made 
dimensionless with p* ,  g* and k*, and 

B* w*6 g*k,* b, = 1 , m 2 = -  
“*2 ’ P*S* 

and hence 
9k* - = m2 cosec 0. 
“*2 

For linear waves, c is independent of wave steepness and is a known function of 
the water depth which is not changed in that approximation. I /cD is also negligible, 
so that (6) is used to find 0 and (7) gives the wave steepness. 

For nonlinear waves, c depends on wave steepness and I /cD is no longer negligible 
(Cokelet’s (1977) tables indicate it does not exceed 0.05). Equations (6) and (7 )  are 
simultaneous equations for wave steepness and direction - details of solution methods 
are in Ryrie & Peregrine (1982). The existence of two distinct solutions of (6) and 
( 7 )  is shown most readily for waves in deep water. There I / D  = 0 , g D q  = 0, so that 
0 may be eliminated to give a single equation for wave steepness: 

ca(3T-2V) ( l -mtc4) i  = b,. (11) 

The left-hand side of this equation, for given m2, is a function of wave steepness 
with the following properties. It is zero for zero wave steepness since 3T- 2 V is a 
dimensionless form of the magnitude of the wave-action flux. It is also zero when 
c2 = m;,. Since 3T-2V and c are both smoothly increasing functions of wave 
steepness for the realistic range of their values, the left-hand side of (11) is a smooth 
and positive function between its two zero values. Thus for some steepness it has a 
maximum value. Hence two solutions of ( 1  1) exist for values of b, between zero and 
some maximum value b,,, a t  which the roots coincide. For b, > b,,, there are no 
solutions. A similar result holds for finite water depths but is less easy to demonstrate. 
We refer to such pairs of solutions as ‘conjugate’ solutions. 

Two water-wave properties modify the above argument. For given frequency and 
water depth, waves have a maximum phase velocity and maximum steepness. Thus 
the solution of (1 1 )  corresponding to a steeper wave may not always exist. Also there 
may be further solutions possible with steepness in the interval between that of 
maximum phase velocity and maximum steepness. We do not discuss these solutions 
since (a)  wavetrains in that steepness range on deep water are unstable to a rapidly 
growing perturbation (Longuet-Higgins 1978) and it seems likely that the same is 
true for finite water depths; and ( b )  unlike other aspects of this problem, such 
behaviour is probably peculiar to surface water waves. 

The existence of anomalous refraction is seen to be due to the variation of wave 
phase velocity with steepness. The differing character of ordinary and anomalous 
refraction may roughly be described as follows. 

Ordinary refraction: decreasing depth leads to a lower phase velocity which implies 
that wave crests turn to become more nearly parallel to the depth contours. 

Anomalous refraction : decreasing depth leads to shorter steeper waves such that the 
phase velocity increases, implying that wave crests turn to become more nearly 
perpendicular to the depth contours. 
At the critical angle these two effects balance each other. 
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FIQURE 3. Conjugate solutions for deep-water waves may be identified from this diagram; they 
correspond to the two points of intersection of a line of constant m, (broken lines) and a line of 
constant b, (dashed lines). Line D is the locus of self-conjugate solutions and line M is the locus 
of solutions conjugate to the highest wave. The line b, = 0 consists of ak = 0 and 8 = 90'. 

3. Conjugate solutions 
The conjugate solutions found in the refraction calculations described above exist for 
waves in a uniform medium independent of any non-uniformities in the medium or 
the waves. In  a uniform medium the definition of x1 and x2 directions become 
arbitrary ; however, if given components of wave-action flux and wavenumber are 
to be conserved, for a given frequency, then these components define two directions 
Ox,, Ox, with components B: and kz given. Although we take these directions to be 
orthogonal, the effects we describe do not depend on this. 

Having chosen the coordinate directions, and medium properties, the whole range 
of plane-wave solutions of a given frequency can be described by two parameters, 
in our case wave steepness ak and direction 6. Here, to be consistent with the 
refraction calculations 6 is the angle between Ox, and k*. Thus Ox, corresponds to 
the direction of depth contours, or to the direction of a linear caustic, 6 = b. We 
are thus particularly interested in values of 6 near !gr. Figure 3 shows part of the 
(ak, 6)-plane for deep water waves. 

Two families of lines are drawn in figure 3. One set is for values of the dimensionless 
wave-action flux component b, ; note that the lines h, = 0 are both ak = 0 and 6 = b. 
The second set is for values of m,. It is the increase of wavelength with steepness for 
fixed frequency w* which causes these lines to curve as ak increases. Linear theory 
gives the straight line a t  ak = 0. 

If one wave state is selected by choosing a point in the (ak, @-plane, its conjugate 
wave state is readily found by following the b, and m2 lines through that point to 
their second point of intersection. (Further points of intersection can occur for the 
steepest waves, but as stated earlier these are not considered here.) 

Consideration of a few examples soon leads to the identification of two important 
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FIGURE 4. This figure is a simplified version of figure 3 with results from a near-linear 

approximation added for comparison. Dashed lines are the near-linear curves. 

boundaries, which are marked in the diagram. One, which we call line M ,  corresponds 
to waves whose conjugate solution is a wavetrain of maximum phase velocity. Waves 
in the (ak, @-plane lying below this line have no conjugate solution. 

The other boundary in the diagram, line D ,  goes through points that are 
‘self-conjugate ’. That is they correspond to the double roots of (1  1) .  Line D divides 
the (ak,O)-plane into two regions corresponding to the two cases of regular and 
anomalous refraction. On the line D ,  the Jacobian m,)/a(ak, 6) vanishes, and this 
provides a way of determining the line. 

A near-linear approximation to figure 3 can readily be made by using the approach 
followed by Peregrine & Smith (1979). In their notation, the dispersion equation is 

(12) G(w,  k )  + H(k) a2 = 0, 
and the wave-action flux is 

B = Gka2+&Hka4. 

The functions G(w, k )  and H(k) need have no special form. Conjugate solutions occur 
near an R-type caustic, which Peregrine & Smith (1979) show can occur for wave 
systems for which 

W G k l k l  ’ 0. (14) 

This condition can be satisfied in a wide range of wave systems, which hence have 
conjugate solutions. 

The near-linear expressions (12) and (13) can easily be used for deep-water waves 
in (2) and (4). A comparison between near-linear and ‘numerically exact’ results is 
given in figure 4. This shows the (ak, 6)-plane again with lines drawn using near-linear 
theory and corresponding lines from figure 3. It appears that the near-linear theory 
is adequate up to a steepness of a k  = 0.2. 

The results presented in figure 3 have parallels for water waves on any given finite 



98 D.  H .  Peregrine and S.  C. Ryrie 

A 
1 I 

40" I I 

depth of water. The major quantitative change is that the range of 8 for which 
conjugate solutions exist changes as the depth increases. To illustrate this, figure 
5 shows the angle 8, a t  which the line M meets a k  = 0, as a function of dimensionless 
depth k,h, where k, is the wavenumber of linear waves. For this point, b,  = 0, so that 
it is easily deduced from (7)  that 8 = in for the highest wave, and from (1) and (2) 
that 

where c: and cZax are the phase velocity for infinitesimal waves and the maximum 
phase velocity respectively. Depths are related by (5 ) .  

An indication of how line D changes for different depths is obtained by considering 
its behaviour in the limit as ak+O, B+&r. After some analysis, (6) and (7) yield 

+7r-e = -2 ak+O[a2k2, (+-e)2], (i): 
where c, is the linear phase velocity and 

I dc c, = ~ 

d(a2k2) 

evaluated at a k  = 0. For Stokes waves 

-. - .  
2c; 9 - 1072 + 974 - _  - , where r = tanhk,h. 
CO 8r4 

.. . . .  n ,- I I ~I ... 1 1 m. . 
(17) 

. n . . .  
yc'igure ti shows the variation 01 (zcO/cO)E with k,h. ' lhe large growth 01 this 

coefficient as k,h + 0, parallels the failure of the Stokes approximation in that limit. 
The refraction calculations of Stiassnie & Peregrine (1980) and Ryrie & Peregrine 
(1982) make use of a 'train of solitary waves ' approximation for small values of k,h, 
but this approximation fails as ak + 0. 

For small-amplitude waves, Stokes waves can be matched with cnoidal waves when 
the Ursell number a/k2DS is O(1) ; for example see Flick, Guza & Inman (1981), where 
the matching of phase velocity and energy flux is discussed. For sufficiently long 
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FIGURE 7. Conjugate solutions may be found from this diagram of the (a /h ,  @-plane for waves 
with k:h* = 0.05. See caption to figure 3. 

waves the velocity increases directly with the amplitude, and line D will be tangential 
to ak = 0 in that case, with 

In this case, as the waves approach a solitary-wave type of solution, the parameter 
a / h  is a better measure of wave steepness. An example of the (a/h,O)-plane for 
k,* h* = 0.05 is given in figure 7. 

(in - O)z oc ak. 



100 D .  H .  Peregrine and S .  C. Ryrie 

The fact that line D meets ak = 0 in figures 3 and 7 implies that linear theory may 
be extremely limited in application to refraction problems in cases where waves travel 
parallel to depth contours. The domain of the steeper, essentially nonlinear, solution 
extends to ak = 0 a t  0 = in. Peregrine (1983) shows that it is necessary to consider 
effects due to nonlinear splitting of the group velocity in these cases, and that 
diffraction is also likely to be significant. 

5. Discussion 
The existence of conjugate solutions has not previously been noted. They raise the 

possibility of jumps in wave properties between two conjugate wave states. The 
possibility of wave jumps, or shocks, is noted in Whitham (1965) and other papers. 
Peregrine (1983) describes wave jumps between these solutions and shows that in a 
hydraulic analogy the anomalous solution corresponds to subcritical flow. Hence, it 
only occurs when some ‘ control ’ (like a weir in channel flow) affecting the wave field 
exists. For waves incident on a beach such a control does not usually occur, and an 
offshore influence on the wave field ensures that a normal refraction solution occurs. 
This is analogous to upstream influence in hydraulics. Offshore influence commences 
where waves first encounter the beach. This could either be at  some initial time, or 
some alongshore point. In either case it is necessary to introduce the extra dimension, 
time or longshore distance, into the analysis, and the approach of this and the 
preceding papers is inapplicable. The transition from an ‘anomalous ’ to a ‘regular’ 
solution appears to involve solutions with this extra dimension of time or space. Only 
the reverse, regular to anomalous, transition can be described by a jump. The case 
of weak variation in the Ox, direction is discussed in Peregrine (1983). 

Line D of figure 3 appears to correspond to (i) line E of figure 2 in Saffman & Yuen 
(1980) ; (ii) line Wof figure 9 in Crawford et al. (1981). These are neutral stability curves 
for modulations at an angle 0 to uniform wavetrains of the corresponding steepness. 
Line D of figure 3 is not quite the same line as (i) and (ii) above since they are for 
waves of a given wavenumber, whereas line D is for given frequency. A version of 
figure 3 (not illustrated here) using a dimensionless wave-action flux 

instead of b,  gives the lines (i) and (ii). However, y * k * / ~ * ~  is a function of wave 
steepness. 

Figure 9 of Crawford et al. (1981) is of interest since it includes curves calculated 
by using a nonlinear Schrodinger equation and the Zakharov equation. The Zakharov 
equation allows for the effect of ‘free’ Fourier components as well as ‘bound’ 
components, and the nonlinear Schrodinger (NLS) equation is restricted to a small 
range of values of 19: both equations allow a greater rate of wave modulation than 
the present work but are not applicable to the steepest waves. Peregrine (1983) uses 
an NLS equation. 
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